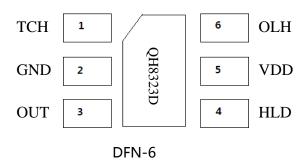

一、概述

QH8323D是一款單按鍵觸摸及接近感應開關,其用途是替代傳統的機械型開關。該 IC採用 CMOS 工藝製造,結構簡單,性能穩定。該 IC 通過引腳可配置成多種模式,可廣泛應用於燈光控制、玩具、家用電器等產品。 DFN-6 封狀,比 SOT23-6 的封裝體積更小。


二、特點

- ◆ 工作電壓:3.0V~5.5V
- ◆ 低功耗模式僅 1.5uA(在 3V 且無負載)
- ◆ 電源穩定後, 0.5S 內完成上電初始化
- ◆ 外部配置引腳設置為多種模式
- ◆ 内置穩壓電路
- ◆ 靈敏度自動校準功能,工作環境發生變化可以快速自動適應
- ◆ 最長輸出約 16S
- ◆ 高可靠性,芯片內置去抖動電路,可有效防止外部雜訊干擾而導致的誤動作
- ◆ 可用於玻璃、陶瓷、塑膠等介質表面
- ◆ DFN-6 封裝

三、 功能模組圖

四、封裝及引腳描述

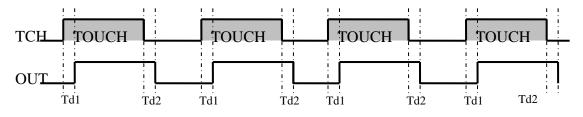
NO	名稱	描述
1	TCH	TOUCH PAD 輸入
2	GND	負電源
3	OUT	CMOS 輸出
4	HLD	保持/同步模式選擇
5	VDD	正電源
6	OLH	輸出高/低有效模式選擇

五、功能描述

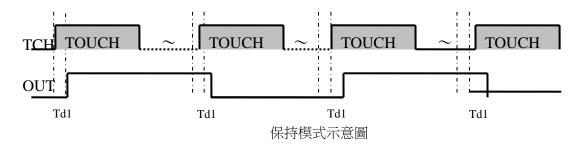
可通過外部配置引腳設置為多種模式。外部配置引腳懸空時,配置位元自動設置為默認值(Default)。

名稱	選項	功能
HLD	=1	保持模式
	=0(Default)	同步模式
OLH	=1	輸出低電平有效
	=0(Default)	輸出高電平有效

1 低功耗模式


芯片通常情況下在低功耗模式下運行,以節省能耗。在此模式下的,偵測到按鍵信號後,會切換至快速模式, 直到按鍵觸摸釋放,並保持約 10S,然後返回低功耗模式。

2 保持/同步模式(HLD)


當 PIN 腳 HLD 懸空時,默認下拉為低電平,置為同步模式。

設置 HLD=0,則選擇同步模式,此時 PIN 腳 OUT 的狀態與觸摸響應同步:只有檢測到觸摸時有輸出響應;當觸摸消失時,OUT 的狀態恢復為初始狀態。

設置 HLD=1,則選擇保持模式,此時 PIN 腳 OUT 的狀態受在觸摸響應控制下保持,當觸摸消失後仍保持為響應狀態;再次觸摸並響應後恢復為初始狀態,如下圖所示。

同步模式示意圖

注:Td1 為 TOUCH 響應延遲時間,Td2 為 TOUCH 撤銷延遲。

3 最長按鍵輸出時間

若有物體蓋住檢測板,可能造成足以偵測到的變化量,一直處於檢測到有觸摸的狀態。為避免此情況,設置了最長按鍵時間約 16S,當檢測到觸摸信號超過這個時間,系統會重定,輸出變為無效。

4 輸出模式選擇(OLH、HLD)

可設置多種輸出模式,懸空時,默認為下拉低電平狀態。

HLD	OLH	OUT
0	0	直接模式,CMOS 輸出高電平有效(默認)
0	1	直接模式,CMOS 輸出高電平有效
1	0	鎖存(toggle)輸出,上電狀態=0
1	1	鎖存(toggle)輸出,上電狀態=1

5 靈敏度調節

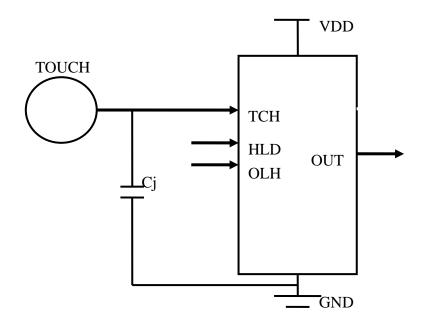
5-1 外接調節電容 Cj

調節電容值的範圍是 OpF~75pF,電容值的增加將導致靈敏度降低。

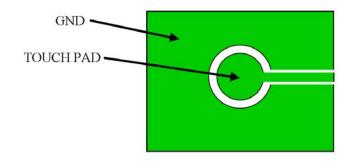
5-2 改變連接到 TCH 的 TOUCH PAD 的面積和形狀

如需增加觸摸感應靈敏度,可適當增大 TOUCH PAD 的面積;但 TOUCH PAD 面積增大到一定程度後,面積的繼續增加幾乎不能對靈敏度產生影響。

5-3 TOUCH PAD 到 TCH 引腳的導線長度及 PCB 的佈局,都會對靈敏度產生一定的影響。

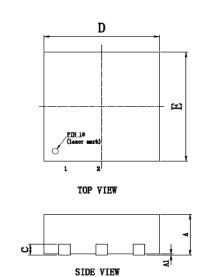

六、絕對最大值 (所有電壓以 GND 為參考)

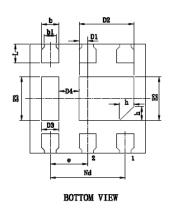
項目	符號	額定值	單位
供給電壓	V_{DD}	-0.3 ~ 5.5	V
輸入/輸出電壓	V _I / V _O	GND-0.3 ~ VDD+0.3	V
工作溫度	T _{DD}	0 ~ 70	°C
儲藏溫度	T _{ST}	-20 ~ 125	$^{\circ}\! C$


七、電氣參數 (所有電壓以 GND 為參考, VDD=3.0V,環境溫度為 25℃)

参數	符號	條件	最小值	典型值	最大值	單位
工作電壓	VDD	啟用內部穩壓電路	3.0		5.5	V
内部穩壓電路輸出 VREG			2.9	3.0	3.1	V
靜態工作電流	T	低功耗模式		1.5		μА
(啟用內部穩壓電路)	I _{DD}	快速模式		5.1		μА
輸入引腳	V _{IL}	輸入低電壓範圍	0		0.2	VDD
輸入引腳	V_{IH}	輸入高電壓範圍	0.8		1.0	VDD
輸出引腳灌電流	電流 I _{oL} VDD=3V, VOL=1.0V			10.1		mA
輸出引腳拉電流	I_{oH}	VDD=3V, VOH=2.0V		8.2		mA

八、典型應用電路圖


- 注:1. Cj 指調節靈敏度的電容,電容值大小 $0pF \sim 75pF$ 。電容越小靈敏度越高。
- 2 · VDD 與 GND 間需並聯濾波電容 C0 以消除雜訊,建議值 10uF 或更大。供電電源必須穩定,如果電源電壓漂移或者快速變化,可能引起靈敏度漂移或者檢測錯誤。
 - 3·TOUCH PAD 的形狀與面積、以及與 TCH 引腳間導線長度,均會對觸摸感應靈敏度產生影響。
- 4. 從 TOUCH PAD 到 IC 管腳 TCH 不要與其他快速跳變的信號線並行或者與其他線交叉。TOUCH PAD 需用 GND 保護,請參考下圖。


- 5. 週邊 PCB 電路佈線規則具體可參考《電容式觸摸按鍵-PCB 佈線》檔。
- 6. 以上功能選項腳若選擇默認值,建議接到固定電平,如需選擇輸出同步模式,HLD 腳建議接到 GND。

QH8323D 單通導觸摸芯片

九、封裝尺寸

SYMBOL	MILLIMETER		
STABOL	MIN	NOM	MAX
A	0.70	0.75	0. 80
A1	_	0.02	0. 05
ь	0. 25	0.30	0. 35
b 1	0. 20REF		
c	0.203REF		
D	1. 90	2. 00	2. 10
D1	0.08	0. 15	0. 20
D2	0. 90	0. 95	1.00
D3	0. 25	0. 30	0. 35
D4	0.30	0. 35	0.40
•	0. 65BSC		
Nd		1. 30BSC	
E	1. 90	2.00	2. 10
E2	0.75	0.80	0.85
E3	0.75	0.80	0. 85
L	0.30	0.35	0. 40
h		0. 25RB	F

注意事項:

- 1. 以上資料如有更新,將不另行通知,請用戶在使用前先確認手中的資料是否為最新版本。
- 2. 對於錯誤或不恰當操作所導致的後果,我司將不承擔任何責任。

更改記錄:

日期	版本	編輯人	更新內容
2019-6-18	190618	N / W	初版